LIFE SCIENCES FOR ENGINEERS LAB

Course Code	19BS1451	Year	II	Semester	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisite	NIL
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes						
After successful completion of the course, the student will be able to						
CO1	Understand basic facts and concepts in life sciences.					
CO2	Evaluate and explain different processes in industrial applications.					
CO3	Summarize the applications of various spheres in life sciences in relevance to future studies.					
CO4	Develop the ability to apply the principles of Mendalian laws and acquire problem solving skills.					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3: High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

Syllabus						
Expt.	Contents					
No		CO				
1	Microscopy	CO1, CO3				
2	Dissect & mount different parts of plants using Microscope	CO1, CO3				
3	Estimation of Proteins by using Biuret method	CO1, CO2				
4	Estimation of enzyme activity.	CO1, CO2				
5	Estimation of chlorophyll content in some selected plants.	CO1, CO3				
6	Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using	CO2,CO3				
	Spectrophotometer					
7	Mendal's laws	CO1, CO4				
8	Solve Problems based on Mapping .	CO2, CO4				